Android Native Audio

Copyright 2015-2016 Christopher Stanley

Android Native Audio (ANA) is an asset for Unity 4.3.4 - 5.x on Android. It provides easy

access to the native Android audio system for low-latency audio playback.

Note that audio latency can have many contributing factors, including hardware and Android
itself. ANA only removes most of the latency generated by Unity. This will be different on
every device. On some devices the reduction in latency will be large, on others it will be

smaller.

Thank you!

These creations are a labor of love for me. It's very rewarding to know that what | make goes
out into the world and helps people. Please feel free to contact me if you need any assistance
or have any feedback. Thank you for your purchase, and | hope you enjoy using Android

Native Audio!

Christopher

If you like Android Native Audio, please tell everyone!

Leave a review on the Asset Store.

If you don't like Android Native Audio, please tell me!

Let me know how | can help: support@ChristopherCreates.com



https://www.assetstore.unity3d.com/#!/content/35295
mailto:support@ChristopherCreates.com

AndroidNativeAudio & ANAMusic

ANA version 2.0 brings you a whole new feature: ANA Music. Where the
AndroidNativeAudio class is for short clips like sound effects, the ANAMusic class is for
long tracks like music. See Assets\Android Native Audio\ANA Music.pdf for details

on how to use it.

Examples
There are two included example scenes to show you how ANA works and let you quickly test

the difference in latency between Unity and ANA. They are located at Assets\Android

Native Audio\Examples.

Split Application Binary (OBB)
ANA supports split application binaries (APK + OBB files), and will automatically find and load

your audio files in either location.

PlayMaker Support

ANA includes a full set of PlayMaker actions and two example scenes. These are located in
Assets\Android Native Audio\PlayMaker.zip. Just unzip that file anywhere in your
Assets folder to use them. For more information on PlayMaker and using actions, see the

official website.

http://hutonggames.com/

Debug Logging

At the top of AndroidNativeAudio.cs you will find a DEBUG variable. Set it to true to
enable logging of ANA activity. You can monitor Unity logging on Android by running
“<Android SDK Path>\platform-tools\adb logcat -s Unity”. If you are on
Windows and your Android SDK is installed to the default location, you can double-click
Assets\Android Native Audio\Windows Android Logcat.cmd to automatically

open the log console.


http://hutonggames.com/

Understanding Android Audio
ANA is simple to use, but it works in ways that are different from Unity's audio system. There

are three core concepts to know:

Pool: The pool is the central Android resource that manages everything else. (Itis a direct call
to android.media.SoundPool in Java.)

File: A file is an individual audio file loaded into memory. A file is only loaded, played, and
unloaded.

Stream: A stream is an audio channel currently playing a file. All other operations such as

pause and resume are performed on streams.

The life cycle of ANA works like this:

Make the pool

Load a file

Play the file

Optionally modify the stream (pause, volume, stop, etc)
Unload the file

o 00k~ 0w DN PR

Release the pool

Android Audio Files

Audio files for ANA must be placed in Assets/StreamingAssets. This is a special Unity
folder that makes raw files available directly in the APK (or OBB). You can create sub-folders
under StreamingAssets to organize your files. (You can also place files in

Application.persistentDataPath at run time, see the load method below.)

All audio files for ANA must be in an Android-compatible format. See the official

documentation for details:

http://developer.android.com/guide/appendix/media-formats.html#core

For best performance, | suggest mono WAV (PCM) files at 16 bits and 44,100 Hz.


http://developer.android.com/guide/appendix/media-formats.html#core

Examples

When the scene loads:
AndroidNativeAudio.makePool(1);
int fileID = AndroidNativeAudio.load("Effect.wav");

Later, play the file:
int streamID = AndroidNativeAudio.play(filelD);

Other operations are very intuitive:
AndroidNativeAudio.pause(streamID);
AndroidNativeAudio.resume(streamID);

AndroidNativeAudio.setVolume(streamID, 0.5f);
When you're done, you should unload the file(s) and release the pool:
AndroidNativeAudio.unload(filelID);

AndroidNativeAudio.releasePool();

It's that easy!

Tips

* AndroidNativeAudio is intended for short, small sound effects. Use ANAMusic (or

Unity's normal audio) for longer tracks such as background music.

* Make sure your audio files are in the right place and the right format (see above).

* Remember that most Android devices don't have much memory. Be mindful of how

many files you load and streams you play at once. And be sure to unload unneeded

files and release the pool when you're done.

* Loading a file takes some amount of time. Be sure to load them ahead of when you

need to play them. Use a callback method if you need to be sure it's finished (see the

load method below).



ANA & Non-Android Environments

Editor
ANA can't play while in the editor (because it's not Android). Instead, it logs to the console
window to let you know what it would be doing if it were on Android. Note that return values

such as fileID won't be correct in the log, as it needs Android to generate the real data.

Multi-Platform
If you want to use the same code for both Android and non-Android platforms, you can make

calls like this.

#1f UNITY_ANDROID && !UNITY_EDITOR

streamID = AndroidNativeAudio.play(fileID);
#else

audioSource.Play();
#endif

This will use the AndroidNativeAudio call when on android, and the audioSource call

everywhere else (including in the editor when set for Android).

Non-Redundant Files

In the editor, Unity won't allow you to use files in StreamingAssets as an AudioSource. So the
basic strategy for multi-platform is to have two copies of you audio files, one for Android and
one for everything else. This works fine, but takes up twice the space and means you have to

manage two copies of your files. You can work around the problem with something like this.

var www = new WWW("file:" + Application.streamingAssetsPath +
"/Native.wav");
while (!www.isDone) { }

audioSource.clip = www.GetAudioClip(false, false, AudioType.WAV);

This lets you load a StreamingAssets file into an AudioSource at run time. It's a bit

clunky, but it will allow you to work on any platform with just one set of files.



Scripting Reference

The AndroidNativeAudio class is designed to closely follow the native
android.media.SoundPool. If you'd like to know more about what's going on behind the
scenes, the official documentation has all the details:

http://developer.android.com/reference/android/media/SoundPool.html

AndroidNativeAudio.load(string audioFile, bool usePersistentDataPath =
false, Action<int> callback = null)
Loads an audio file. Use makePool before loading.

audioFile - The path to the audio file, relative to Assets\StreamingAssets. (Unless using
usePersistentDataPath, see below.)

usePersistentDataPath - Makes audioFile relative to Application.persistentDataPath.

callback - Method to call when load is complete. Must take one int parameter which is the loaded file ID.

Returns: int - The file ID if successful, -1 if the load fails.

AndroidNativeAudio.makePool(int maxStreams = 16)

Makes an Android native audio pool.

maxStreams - The maximum number of streams. (The maximum number of simultaneously playing files.)

AndroidNativeAudio.pause(int streamID)

Pauses a stream.

streamlD - The ID of the stream to pause.

AndroidNativeAudio.pauseAll()

Pauses all playing streams. Call resumeAll to resume.


http://developer.android.com/reference/android/media/SoundPool.html

AndroidNativeAudio.play(int fileID, float leftVolume = 1, float rightVolume
= -1, int priority = 1, int loop = @0, float rate = 1)
Plays a file. Use load before playing.

filelID - The ID of the file to play.

leftVolume - The left volume to play at (0.0 - 1.0). If rightVolume is omitted, this value will be used for both.
rightVolume - The right volume to play at (0.0 - 1.0). Defaults to 1leftVolume.

priority - The priority of this stream. If the number of simultaneously playing streams exceeds maxStreams in
makePool, higher priority streams will play and lower priority streams will not.

loop - How many times to loop the audio. A value of O will play once, -1 will loop until stopped.

rate - The rate to play at. Avalue of 0.5 will play at half speed, 2 will play at double speed.

Returns: int - The stream ID if successful, -1 if the play fails.

AndroidNativeAudio.releasePool()

Releases the audio pool resources.

AndroidNativeAudio.resume(int streamID)

Resumes a paused stream.

streamID - The ID of the stream to resume.

AndroidNativeAudio.resumeAll()

Resumes all streams paused with pauseAll.

AndroidNativeAudio.setLoop(int streamID, int loop)

Sets the loop of a stream.
streamlD - The ID of the stream to change.

loop - How many times to loop the audio. A value of O will play once, -1 will loop until stopped.

AndroidNativeAudio.setPriority(int streamID, int priority)

Sets the priority of a stream.

streamlD - The ID of the stream to change.

priority - The priority of this stream. If the number of simultaneously playing streams exceeds maxStreams in

makePool, higher priority streams will play and lower priority streams will not.



AndroidNativeAudio.setRate(int streamID, float rate)

Sets the rate of a stream.
streamlID - The ID of the stream to change.

rate - The rate to play at. A value of 0.5 will play at half speed, 2 will play at double speed.

AndroidNativeAudio.setVolume(int streamID, float leftVolume, float
rightVolume = -1)

Sets the volume of a stream.

streamlD - The ID of the stream to change.

leftVolume - The left volume to play at (0.0 - 1.0). If rightVolume is omitted, this value will be used for both.
rightVolume - The right volume to play at (0.0 - 1.0). Defaults to 1leftVolume.

AndroidNativeAudio.stop(int streamID)

Stops a stream.

streamlD - The ID of the stream to stop.

AndroidNativeAudio.unload(int fileID)

Unloads a file from the pool. Returns true if unloaded, false if previously unloaded.
fileID - The ID of the file to unload.

Returns: bool - True if unloaded, false if previously unloaded.



